Noise-informed covariance estimation

Matthias Morzfeld

Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics Scripps Institution of Oceanography University of California, San Diego

Powered by

Ensemble Kalman filter/smoother

- Forecast ensemble: $\mathbf{x}_i, \quad i = 1, \dots, n_e$
- Observation:
- Update:
- Kalman gain:

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \boldsymbol{\eta}, \quad \boldsymbol{\eta} \sim \mathcal{N}(0, \mathbf{R})$$

$$\mathbf{x}_{i}^{a} = \mathbf{x}_{i} + \mathbf{K} \left(\mathbf{y} - (\mathbf{H}\mathbf{x}_{i} + \boldsymbol{\eta}_{i}) \right)$$
$$\mathbf{K} = \mathbf{P}\mathbf{H}^{T} \left(\mathbf{H}\mathbf{P}\mathbf{H}^{T} + \mathbf{R} \right)^{-1}$$

$$\hat{\mathbf{P}} = \frac{1}{n_e - 1} \sum_{i=1}^{n_e} (\mathbf{x}_i - \bar{\mathbf{x}}) \otimes (\mathbf{x}_i - \bar{\mathbf{x}}), \quad \bar{\mathbf{x}} = \frac{1}{n_e} \sum_{i=1}^{n_e} \mathbf{x}_i$$

Caveat

- Ensemble size is small
- Dimension is large, $n_e \ll n_x$
- Covariance estimate is inaccurate

Ensemble Kalman filter/smoother

- Forecast ensemble: $\mathbf{x}_i, \quad i = 1, \dots, n_e$
- Observation:

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \boldsymbol{\eta}, \quad \boldsymbol{\eta} \sim \mathcal{N}(0, \mathbf{R})$

- Update:
- Kalman gain:

 $\begin{aligned} \mathbf{x}_{i}^{a} &= \mathbf{x}_{i} + \mathbf{K} \left(\mathbf{y} - (\mathbf{H}\mathbf{x}_{i} + \boldsymbol{\eta}_{i}) \right) \\ \mathbf{K} &= \mathbf{P}\mathbf{H}^{T} \left(\mathbf{H}\mathbf{P}\mathbf{H}^{T} + \mathbf{R} \right)^{-1} \end{aligned}$

$$\hat{\mathbf{P}} = \frac{1}{n_e - 1} \sum_{i=1}^{n_e} (\mathbf{x}_i - \bar{\mathbf{x}}) \otimes (\mathbf{x}_i - \bar{\mathbf{x}}), \quad \bar{\mathbf{x}} = \frac{1}{n_e} \sum_{i=1}^{n_e} \mathbf{x}_i$$

Caveat

- Ensemble size is small
- Dimension is large, $n_e \ll n_x$
- Covariance estimate is inaccurate

EnKF in NWP

- O(10⁸) unknowns
- $O(10^6)$ observations
- Ensemble size ~200

Ensemble Kalman filtering (NWP)

- They implemented EnKF
- It did not work
- They wondered why
- They looked at some correlations
- They noticed that things are off weather in *La Jolla, CA*, is correlated to weather in *Vienna, Austria*
- They deleted the correlations that they knew should not be there
- EnKF started to work

Covariance localization

- Small ensemble size implies that covariance estimates are noisy
- Noise presents itself as a "spurious correlation"
- Remove spurious correlations

Covariance localization

Problem formulation

Inspiration

NICE in 3 steps Examples Summary

What if I can't localize?

Examples

- Parameter estimation
- Training of neural networks for sub grid parameterizations (CliMA)
- Assimilation of nonlocal/integrated observations

Idea

• Replace spatial decay of correlation with "another" assumption

What's the best localization?

$$\begin{split} \min_{\mathbf{L}} \left| \left\langle \mathbf{L} \circ \hat{\mathbf{P}} - \mathbf{P}_{\mathbf{n_e}} \rightarrow \infty \right\rangle \right|_{\text{Fro}}^2 \\ \mathbf{L}_{ij} &= \frac{\rho_{ij}^2 n_e (n_e - 1)}{\rho_{iijj} (n_e - 1) + \rho_{ij}^2 (n_e^2 - 2n_e + 2) + 1}, \\ \\ \mathbf{L}_{ij} &= \frac{\rho_{ij}^2 (n_e - 1)}{1 + \rho_{ij}^2 n_e} \end{split}$$
(Gaussian)

 \mathbf{a}

Accuracy of correlation estimates

Idea

- "Small correlations are noisy, large correlations are trustworthy"
- The method should further be:
 - Adaptive (no/little tuning)
 - *Inexpensive* (no optimization over matrices)
 - Guarantee PSD estimates (stability of EnKFs)

Problem formulation
Inspiration *NICE in 3 steps*Examples
Summary

Idea

- "Small correlations are noisy, large correlations are trustworthy"
- The method should further be:
 - Adaptive (no/little tuning)
 - *Inexpensive* (no optimization over matrices)
 - Guarantee PSD estimates (stability of EnKFs)

Ingredients

- Inexpensive \rightarrow raise correlations to a power
- PSD guarantees → *Choose powers wisely and interpolate*
- Adaptivity → Make corrections based on expected noise level (Morozov's discrepancy principle)

Classical inverse theory

$$\min_{x} \|\mathbf{y} - f(\mathbf{x})\|_{2}^{2} + \alpha \|\mathbf{x}\|_{2}^{2}$$

- Solution \mathbf{x}^*_{α} depends on "regularization parameter" α
- Determine α such that

$$\|\mathbf{y} - f(\mathbf{x}_{\alpha}^{*})\|_{2} \leq S$$

$$\mathbf{1}$$
Noise level

Application to correlation correction

• Correct correlation by raising it to a power:

$$\hat{\rho}_{\alpha} = \rho^{\alpha} \cdot \rho$$

• Pick largest α such that:

$$\|\hat{\rho} - \hat{\rho}_{\alpha}\|_2 \le S$$

NICE in 3 steps

1. Compute expected noise level (look-up table)

- Compute the standard deviation of ensemble correlation
- Standard deviation is a proxy for the error
- Add (or average) over all variables

1. Compute expected noise level (look-up table)

$$S_{\rho} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} (\sigma_{\rho_{ij}})^2}$$

2. Compute a strong correction

- Raise correlation to an *even* power to $\|\hat{\rho} \hat{\rho}_{\gamma^*}\|_{\text{Fro}} \ge \delta S_{\rho}$ preserve PSD property
- Determine power via discrepancy principle - break it to obtain a correction that is "too strong"

Pick the *smallest* γ that breaks the discrepancy principle

 $\hat{\rho}_{\gamma} = \hat{\rho}^{\circ\gamma} \circ \hat{\rho},$

1. Compute expected noise level (look-up table)

$$S_{\rho} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} (\sigma_{\rho_{ij}})^2}$$

2. Compute a strong PSD correction

 $\hat{\boldsymbol{\rho}}_{\gamma} = \hat{\boldsymbol{\rho}}^{\circ \gamma} \circ \hat{\boldsymbol{\rho}}, \\ \left\| \hat{\boldsymbol{\rho}} - \hat{\boldsymbol{\rho}}_{\gamma^*} \right\|_{\text{Fro}} \ge \delta S_{\rho}$

3. Interpolate to a lower, even power to get the correction just right ("back-paddle")

$$\begin{split} \mathbf{L}(\alpha) &= \alpha \hat{\boldsymbol{\rho}}^{\circ \gamma^*} + (1 - \alpha) \hat{\boldsymbol{\rho}}^{\circ (\gamma^* - 2)} \\ \hat{\boldsymbol{\rho}}_{\alpha} &= \mathbf{L}(\alpha) \circ \hat{\boldsymbol{\rho}} \\ \| \hat{\boldsymbol{\rho}} - \hat{\boldsymbol{\rho}}_{\alpha^*} \|_{\mathrm{Fro}} \leq \delta S_{\rho}, \end{split}$$

- 1. It's a few lines of code
- 2.NICE has connections with Jeff Anderson's *"sampling error correction"* but does not require training/ensembles of ensembles and guarantees PSD estimates
 3. Can be used within LETKF or EAKF


```
function [Cov_NICE,Corr_NICE] = NICE(X,Y,fac)
Ne = size(X, 2);
FileName = strcat('std_ro_Ne_',num2str(Ne),'.mat');
load(FileName, 'r', 'stdCrs')
[CorrXY, \sim] = corr(X', Y');
std_rho = interp1(r,stdCrs,CorrXY,'linear','extrap');
std_rho(CorrXY==1) = 0;
sig_rho = sqrt(sum(sum(std_rho.^2)));
q_0 = 1;
expo2 = 0;
while go == 1
    expo2 = expo2+2;
   L = abs(CorrXY).^expo2;
    Corr_NICER = L.*CorrXY;
    if norm(Corr_NICER - CorrXY,'fro') > fac*sig_rho
        go = 0;
    end
end
expo1 = expo2-2;
rho_exp1 = CorrXY.^expo1;
rho_exp2 = CorrXY.^expo2;
al = 0.1:.1:1;
for kk=1:length(al)
    L = (1-al(kk))*rho_exp1+al(kk)*rho_exp2;
    Corr_NICE = L.*CorrXY;
    if kk>1 && norm(Corr_NICER - CorrXY,'fro') > fac*sig_rho
        Corr_NICE = PrevCorr;
        break
    elseif norm(Corr_NICE - CorrXY, 'fro') > fac*sig_rho
        break
    end
    PrevCorr = Corr_NICE;
end
Vy = diag(std(Y,0,2));
Vx = diag(std(X,0,2));
Cov_NICE = Vx*Corr_NICER*Vy;
```

Competitors

Statistics

- Graphical lasso (*Tibshirani*)
- Soft thresholding (*Wainwright*)
- Sparse Covariance estimation (*Xue, Ma, Zou*)
- Convex sparse Cholesky selection (*Rajaratnam*)
- Optimal localization (*benchmark*)
- Sampling error correction (*Anderson, Lee*)

adaptive, efficient, PSD adaptive, efficient, PSD adaptive, efficient, PSD adaptive, efficient, PSD infeasible adaptive, efficient, PSD

Stats methods solve optimization problems

Graphical Lasso
$$F_{G-Lasso}(\Theta) = tr(\hat{\mathbf{P}}\Theta) - \log \det(\Theta) + \lambda \sum_{j \neq k} |\Theta_{jk}|$$
Convex Sparse
Cholesky Selection $F_{CSCS}(\mathbf{A}) = tr(\mathbf{A}^T \mathbf{A} \hat{\mathbf{P}}) - 2\log \det(\mathbf{A}) + \lambda \sum_{1 \leq j < i} |\mathbf{A}_{ij}|$ Sparse covariance
estimation $F_{SCE}(\mathbf{P}) = \frac{1}{2} ||\mathbf{P} - \hat{\mathbf{P}}||_{Fro}^2 + \lambda \sum_{j \neq k} |\mathbf{P}_{jk}|$

Problem formulation
Inspiration
NICE in 3 steps *Examples*Summary

Test cases

- Synthetic covariance examples (sanity check)
- Cycling DA with EnKF (synthetic and semi-real)
- Inversion of electromagnetic field data
- Training of feed-forward neural net on time averaged data from a chaotic dynamics

NICE is just as good or better than other, tuned methods, but computationally more efficient

Bonus:

- Discrepancy principle can make other methods adaptive
- We created **5** other adaptive schemes
 - 1. Partially adaptive NICE (PANIC)
 - 2. Adaptive localization (Ad.-Loc)
 - 3. Adaptive power law corrections (Ad.-PLC)
 - 4. Adaptive soft thresholding (Ad.-ST)
 - 5. Adaptive sparse covariance estimation (ASCE)

Sanity checks on Gaussians: $n = 100, n_e = 20$

Sanity checks on Gaussians: n = 1000, $n_e = 20$

Sanity checks on Lorenz '95 (yawn)

• Cycling DA does not break our ideas

Geomagnetic DA

- KS equation coupled to an induction equation
- One quantity (magnetic field) is observed, the other (velocity) unobserved
- Correlation structure is erratic/hard to anticipate
- Localization fails on this example
- NICE outperformed a heavily tuned shrinkage correction
- NICE is not tuned in any way

Vorticity of velocity Vorticity of velocity

Error in mag. field	Error in vel. field
1.2	2.0
1.2	2.5
1.0	1.8
0.7	1.1
	Error in mag. field 1.2 1.2 1.0 0.7

Geophysical inversion of marine magentotelluric data

Training a NN with time-averaged data of chaotic dynamics

Where can I try NICE?

- Our Matlab code is on github
- CliMA/EnsembleKalmanProcesses.jl CliMA - Climate Modeling Alliance

• JEDI/SABER/BUMP

JEDI - Joint Effort for Data assimilation Integration SABER - System Agnostic Background Error Representation BUMP - Background error on Unstructured Mesh Package

• NEDAS

Next-generation Ensemble Data Assimilation System

Problem formulation Inspiration NICE in 3 steps Examples **Summary**

Facts

- High-dimensional covariance estimation from a small number of samples is (*a*) important; and (*b*) difficult.
- NWP has solved this problem under the assumption that correlation decays with distance (but Statistician don't seem to care)

Contribution

- Assumption: Small/medium correlations are noisy and should be more heavily damped than large ones
- We turned this idea into a simple, robust, adaptive algorithm (NICE)

NICE Properties

- Adaptive and tuning-free
- PSD guarantees (as opposed to many other schemes)
- Works just as well or better than more sophisticated alternatives
- Has proven useful in a large number of diverse test problems

Bonus

• We made 5 other covariance estimation schemes adaptive

Cross-correlations are hard

• NICE works well for **P**, **HPH**^{*T*}, **C**_{*yy*}

$$\mathbf{x}_{i}^{a} = \mathbf{x}_{i} + \mathbf{K} \left(\mathbf{y} - (\mathbf{H}\mathbf{x}_{i} + \boldsymbol{\eta}_{i}) \right)$$
$$\mathbf{K} = \mathbf{C}_{xy} \left(\mathbf{C}_{yy} + \mathbf{R} \right)^{-1}$$
$$\stackrel{\uparrow}{\mathbf{hard}} \stackrel{\uparrow}{\mathbf{easy}}$$

- Current strategy: Turn down the correction with a "fudge factor"
- Replace noise level: $S_{\rho} \rightarrow \delta S_{\rho}$, where $\delta \leq 1$

Scalability: How large can I go?

- NICE requires that we calculate *all* correlations \rightarrow scalable to $O(10^4)$ variables
- NICE can be incorporated into scalable frameworks (ETKF, EAKF) and then is as scalable as the framework (requires additional assumptions)
- NICE can also be incorporated into hybrid ensemble-variational schemes (JEDI)

Thank you. Email: *matti@ucsd.edu*

Thanks to the Office of Naval Research for generous support

D. Vishny, M. Morzfeld, K. Gwirtz, E. Bach, O.R.A. Dunbar, D. Hodyss, *High-dimensional covariance estimation from a small number of samples*, Journal of Advances in Modeling Earth Systems, to appear (2024).